ECUACIONES DE MAXWELL
El presente capítulo fue elaborado asumiendo que el lector maneja el análisis vectorial y tiene los conocimientos de electricidad y magnetismo que se adquieren en un curso inicial. En consecuencia, no trataremos las definiciones de los campos E, D, B y H ni discutiremos aquellos fenómenos básicos que pueden encontrarse en la abundante bibliografía existente. Como libros de referencia destacamos los siguientes:
1. J. Jackson – "Electrodinámica Clásica”.
2. A. Sommerfeld, vol. 3 – “Electrodynamics”.
3. L. Landau et al; vol. 8 – "Electrodynamics of Continuous Media".
El objetivo central de este trabajo es elaborar una discusión conceptual profunda de los Postulados del Electromagnetismo, es decir las Ecuaciones de Maxwell, aspecto que no suele tratarse con la atención necesaria.
INTRODUCCIÓN
La Teoría Electromagnética del físico escocés James Clerk Maxwell (1831-1879) es una de las obras intelectuales más importante en la historia de las ciencias.
Su aparición se inicia en 1861 (“On Physical Lines of Force”) y se completa en un tercer trabajo en 1865 (“A Dynamical Theory of the Electromagnetic Field”).
Es interesante remarcar que en esa época ya se conocían muchas leyes individuales sobre el comportamiento de la electricidad y el magnetismo, pero no se tenía una teoría formal que usando el menor número posible de Postulados explicara los fenómenos de naturaleza electromagnética conocidos.
Maxwell supo seleccionar cuatro fenómenos básicos fundamentales como Principios, con los cuales armó un modelo físico matemático capaz de explicar la totalidad de las leyes en esa disciplina y predecir fenómenos desconocidos.
Esta teoría es considerada el nacimiento de la Física Moderna debido a que sus consecuencias incidieron drásticamente en todas las ramas de la Física, ya sea permitiendo fijar las condiciones de validez de los modelos existentes o generando bases conceptuales más profundas. Además de conformar un modelo completo para los fenómenos clásicos del electromagnetismo, explicó de manera consistente toda la óptica ondulatoria y, en parte, la naturaleza de la luz. Predijo la existencia de ondas electromagnéticas y demostró que el campo es un ente físico real e independiente de la materia.
El desarrollo del Electromagnetismo permitió comprender el mecanismo de interacción entre cuerpos, invalidando la denominada “acción a distancia” que implícitamente establecía la Ley de Coulomb. Nótese que si en la ley de Coulomb una de las dos cargas modificara su valor, la fuerza sobre la otra carga cambiaría simultáneamente, lo que implica una acción a velocidad infinita entre las cargas, mecanismo mágico que no soporta razonamiento alguno.
La interpretación de las interacciones entre cuerpos por medio de campos asociados que se propagan a velocidad finita, hoy llamada interacción “campo-partícula”, resultó consistente con el Principio de Causalidad y con la posterior Teoría de Relatividad Especial, por lo cual se lo asumió de validez general e independiente de la naturaleza particular del fenómeno.
Por último corresponde señalar que la Teoría de Relatividad Especial está implícita en las ecuaciones de Maxwell pues ellas se cumplen con rigor en todos los sistemas inerciales, lo que permite deducir naturalmente las Transformaciones de Lorentz como relaciones únicas de transformación de coordenadas entre sistemas inerciales.
La formulación moderna del electromagnetismo fue elaborada en 1884 por el gran científico autodidacta Olivier Heaviside (1850-1925), para lo cual estructuró el análisis vectorial y replanteó la formulación de Maxwell, llevándola a la forma que trata la bibliografía actual mediante ecuaciones diferenciales a derivadas parciales.
FUNDAMENTOS DE LAS ECUACIONES DE MAXWELL
Los cuatro fenómenos básicos tomados como Postulados del electromagnetismo son:
1 – Ley de Faraday sobre la fuerza electromotriz inducida.
Esta ley fue descubierta por Michael Faraday en 1831, quien se desempeñaba como encargado del pañol del laboratorio (ordenanza) de la “Royal Institution” de Inglaterra, usando un diseño propio muy simple.
Al mover el imán dentro del cartón, que tenía enrollado un alambre de cobre, las láminas metálicas del electroscopio se abrían, indicando la acumulación de cargas eléctricas en ambas hojuelas como consecuencia de una corriente eléctrica por el alambre de cobre, simultánea con el movimiento.
Ello nos indica que en el conductor de cobre existe un campo eléctrico, condición que sólo se cumple cuando hay movimiento relativo entre el imán y el conductor.
De esta manera contundente Faraday descubrió que la electricidad y el magnetismo se relacionaban funcionalmente si los campos eran variables en el tiempo.
El primer miembro (circulación del campo eléctrico) es la definición de la denominada fuerza electromotriz inducida en el conductor, siendo C la curva definida por el alambre de cobre.
El segundo miembro es la variación temporal (debida al movimiento del imán) del flujo magnético a través de la superficie que tiene por borde a la curva C.
Debe destacarse que inicialmente esta importante ley fue mal interpretada, asumiendo que el campo eléctrico era “creado” por el campo magnético variable, como si fueran causa y efecto, sin reconocer que el comportamiento de ambos campos (E y B) está provocado por el movimiento relativo (causa). Este error, que aún figura en muchos libros sobre el tema, quedará totalmente explicado cuando analicemos las ecuaciones de Maxwell.
2 – Ley de Gauss-Faraday sobre inducción eléctrica.
Los experimentos de inducción eléctrica realizados por Faraday (antes del año 1831) mostraron que si una carga Q es encerrada por un recipiente conductor inicialmente neutro, pero sin establecer contacto directo con el cuerpo cargado (ver figura 2), el recipiente conductor reordena sus cargas (fenómeno de inducción) de tal manera que las superficies interior y exterior del recipiente quedan cargadas con signo opuesto.
La carga total inducida en cada superficie resulta de magnitud exactamente igual a la de la carga encerrada.
El hecho de que la carga inducida en cada superficie sea igual en magnitud a la carga encerrada es algo realmente asombroso, que nos muestra aspectos fundamentales de la electricidad.
Los variados experimentos de Faraday sobre inducción permitieron comprender que los medios conductores poseen una cantidad inmensa de cargas libres en su interior que pueden reordenarse, y mostraron que la carga neta de un conductor permanece constante ante fenómenos inductivos, confirmando la conservación de la carga.
Asimismo, se verificó que para cuerpos en reposo el interior de los conductores es neutro, sin campo eléctrico, aún en presencia de cuerpos externos cargados. Ello implicaba que en el interior de un medio conductor el campo electrostático es nulo, por lo cual la carga inducida sobre su superficie debe anular la acción de cualquier carga, externa o encerrada, fenómeno que se conoce como “apantallamiento”.
La expresión matemática de esta ley fue dada por Gauss y reformulada por Heaviside con la actual forma vectorial, utilizando el campo de “inducción” D, que fuera definido y medido por Faraday, cuyo módulo en un punto cualquiera del espacio representa la densidad de carga inducida máxima que podría obtenerse si ubicáramos una plaquita metálica (transversal al campo).
El primer miembro es el flujo del campo D a través de cualquier superficie que encierre la carga Q, mientras que el segundo miembro representa la carga total encerrada.
Nótese que hemos asumido que la carga de un cuerpo puede ser representada por una función continua integrable, la densidad volumétrica de carga (), suposición que entra en conflicto con la naturaleza discreta de la electricidad. No obstante, la validez matemática de la ley de Gauss-Faraday y su aplicación quedan satisfechas con la generalización de la integración elaborada por Stieltjes.
3 – La ley de Ampère
Hasta el año 1820 se pensaba que la electricidad y el magnetismo eran fenómenos no relacionados. En una conferencia que daba el dinamarqués Oersted (para conseguir fondos para sus proyectos), justamente mientras intentaba mostrar dicha independencia, posó una brújula sobre un conductor con corriente provocando que la aguja se orientara de manera transversal al conductor. Así, de casualidad, descubrió que una corriente eléctrica está rodeada por un campo magnético (ver figura 3).
Luego, Oersted repitió el experimento ante sus alumnos y, aunque no logró dar una explicación satisfactoria, lo publicó.
Fue el gran físico matemático francés A. Ampère (1775-1836) quien interpretó y dio la expresión matemática del fenómeno (que lleva su nombre), además de proponer a las corrientes como única “causa” del magnetismo, propuesta conocida como la Hipótesis de Ampère.
Hoy sabemos que las corrientes eléctricas y el campo magnético asociado no son causa y efecto ya que ambos, corriente y campo, aparecen simultáneamente con el movimiento (causa) de cargas.
El primer miembro es la circulación de H, siendo C cualquier curva cerrada que rodee a la corriente I concatenada. Esta ley es válida sólo para corrientes constantes.
La ley de Ampère puede ser expresada usando el vector densidad de corriente, cuya relación con la corriente está dada por:
Siendo S la sección del conductor donde circula la corriente. Dado que el contorno C de la ley de Ampère encierra la corriente y que fuera del conductor el vector J es nulo, podemos extender el recinto de integración hasta el borde C, quedando:
Nótese que si la corriente es constante, J debe ser estacionario, es decir no depender del tiempo.
4 – No existencia de monopolos magnéticos.
La experiencia mostró que no existen polos magnéticos aislados. Si un imán se parte al medio se obtienen dos imanes de menor intensidad.
Esto muestra una particular propiedad del campo magnético (B), cuyas líneas de fuerza son necesariamente cerradas pues no tienen ni fuentes ni sumideros.
No hay comentarios:
Publicar un comentario